Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 40(1): 2272067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37875265

RESUMO

PURPOSE: Magnetic particle hyperthermia is an approved cancer treatment that harnesses thermal energy generated by magnetic nanoparticles when they are exposed to an alternating magnetic field (AMF). Thermal stress is either directly cytotoxic or increases the susceptibility of cancer cells to standard therapies, such as radiation. As with other thermal therapies, the challenge with nanoparticle hyperthermia is controlling energy delivery. Here, we describe the design and implementation of a prototype pre-clinical device, called HYPER, that achieves spatially confined nanoparticle heating within a user-selected volume and location. DESIGN: Spatial control of nanoparticle heating was achieved by placing an AMF generating coil (340 kHz, 0-15 mT), between two opposing permanent magnets. The relative positions between the magnets determined the magnetic field gradient (0.7 T/m-2.3 T/m), which in turn governed the volume of the field free region (FFR) between them (0.8-35 cm3). Both the gradient value and position of the FFR within the AMF ([-14, 14]x, [-18, 18]y, [-30, 30]z) mm are values selected by the user via the graphical user interface (GUI). The software then controls linear actuators that move the static magnets to adjust the position of the FFR in 3D space based on user input. Within the FFR, the nanoparticles generate hysteresis heating; however, outside the FFR where the static field is non-negligible, the nanoparticles are unable to generate hysteresis loss power. VERIFICATION: We verified the performance of the HYPER to design specifications by independently heating two nanoparticle-rich areas of a phantom placed within the volume occupied by the AMF heating coil.


Assuntos
Antineoplásicos , Hipertermia Induzida , Nanopartículas , Temperatura Alta , Campos Magnéticos
2.
Artigo em Inglês | MEDLINE | ID: mdl-37860628

RESUMO

The dynamic nature of perfusion in living tissues, such as solid tumors during thermal therapy, produces challenging spatiotemporal thermal boundary conditions. Changes in perfusion can manifest as changes in convective heat transfer that influence temperature changes during cyclic heating. Herein, we propose a method to actively monitor changes in local convection (perfusion) in vivo by using a transient thermal pulsing analysis. Syngeneic 4T1 tumor cells were injected subcutaneously into BALB/c mice and followed by caliper measurements. When tumor volumes measured 150-400 mm3, mice were randomly divided into one of two groups to receive intratumor injections of one of two iron oxide nanoparticle formulations for pulsed heating with an alternating magnetic field (AMF). The nanoparticles differed in both heating characteristics and coating. Intratumor temperature near the injection site as well as rectal temperature were measured with an optic fiber temperature probe. Following heating, mice were euthanized and tumors harvested and prepared for histological evaluation of nanoparticle distribution. To ascertain the heat transfer coefficient from heating and cooling pulses, we fit a lumped capacitance, Box-Lucas model to the time-temperature data assuming fixed tumor geometry and constant experimental conditions. For the first particle set, the injected nanoparticles dispersed evenly throughout the tumor with minimal aggregation, and with minimal change in convection. On the other hand, heating with the second particle generated a measurable decline in convective performance and histology analysis showed substantial aggregation near the injection site. We consider it likely that though the second nanoparticle type produced less heating per unit mass, its tendency to aggregate led to more intense local heating and tissue damage. Further analysis and experimentation is warranted to establish quantitative correlations between measured temperature changes, perfusion, and tissue damage responses. Implementing this type of analysis may stimulate development of robust and adaptive temperature controllers for medical device applications.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36945684

RESUMO

Introduction: Magnetic hyperthermia therapy (MHT) is a minimally invasive adjuvant therapy capable of damaging tumors using magnetic nanoparticles exposed radiofrequency alternating magnetic fields. One of the challenges of MHT is thermal dose control and excessive heating in superficial tissues from off target eddy current heating. Methods: We report the development of a control system to maintain target temperature during MHT with an automatic safety shutoff feature in adherence to FDA Design Control Guidance. A proportional-integral-derivative (PID) control algorithm was designed and implemented in NI LabVIEW®. A standard reference material copper wire was used as the heat source to verify the controller performance in gel phantom experiments. Coupled electromagnetic thermal finite element analysis simulations were used to identify the initial controller gains. Results: Results showed that the PID controller successfully achieved the target temperature control despite significant perturbations. Discussion and Conclusion: Feasibility of PID control algorithm to improve efficacy and safety of MHT was demonstrated.

4.
Cancers (Basel) ; 15(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672278

RESUMO

We present in vivo validation of an automated magnetic hyperthermia therapy (MHT) device that uses real-time temperature input measured at the target to control tissue heating. MHT is a thermal therapy that uses heat generated by magnetic materials exposed to an alternating magnetic field. For temperature monitoring, we integrated a commercial fiber optic temperature probe containing four gallium arsenide (GaAs) temperature sensors. The controller device used temperature from the sensors as input to manage power to the magnetic field applicator. We developed a robust, multi-objective, proportional-integral-derivative (PID) algorithm to control the target thermal dose by modulating power delivered to the magnetic field applicator. The magnetic field applicator was a 20 cm diameter Maxwell-type induction coil powered by a 120 kW induction heating power supply operating at 160 kHz. Finite element (FE) simulations were performed to determine values of the PID gain factors prior to verification and validation trials. Ex vivo verification and validation were conducted in gel phantoms and sectioned bovine liver, respectively. In vivo validation of the controller was achieved in a canine research subject following infusion of magnetic nanoparticles (MNPs) into the brain. In all cases, performance matched controller design criteria, while also achieving a thermal dose measured as cumulative equivalent minutes at 43 °C (CEM43) 60 ± 5 min within 30 min.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...